
Available online at http://jprm.sms.edu.pk/ Journal
of Prime Research in Mathematics, 20(1), 2024, 15-22

The implementation of Hosoya index and Hosoya
polynomial into some graphs related to cycles

Herolistra Baskoroputrob, FM Bhattia,∗, Hafiz Muhammad Humzaa, Alfi Y. Zakiyyahb

aDepartment of Mathematics, Riphah International University, Gulberg Campus, Lahore, Pakistan.
bDepartment of Mathematics and Statistics, School of Computer Sciences, Bina Nusantara University, Jakarta, Indonesia

Abstract

The Hosoya index counts the number of independent edge sets in a graph, that is the number of subsets of
the edge set such that no two edges in the subset share a vertex. Moreover, the Hosoya index gives important
details on a graph’s structural properties, including its connectivity. It has applications in a variety of fields,
including computational biology, networking, and chemistry. In our article, we study Hosoya indiex of
amalgamation of cycles and edge-amalgamation of cycles. Moreover, in this article we study the restricted
Hosoya polynomial of amalgamation of cycles and we also give the general form of topological index.
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1. Introduction

The Hosoya index was introduced in 1971 by Hosoya [7]. The purpose of this index is to give a char-
acterization of carbon compounds in organic chemistry. The Hosoya index has been used to measure the
variety of the structures and discover structurally related molecules on different chemical graphs [5, 10, 12].
The molecular structures are initially represented as graphs, where the atoms are the vertices and the bonds
are the edges, in order to employ the Hosoya index for this purpose. The Hosoya index is then calculated
for each graph, producing a number that indicates the structure’s topological complexity.

The paper by Ghorbani et al. [20] focuses on the application of partial Hosoya polynomials in chemistry,
specifically in the prediction of molecular properties [22, 24]. The authors demonstrate the effectiveness of
partial Hosoya polynomials in the prediction of the boiling points of a diverse set of organic compounds.
They also compare the performance of partial Hosoya polynomials with other graph-based descriptors and
show that partial Hosoya polynomials outperform them in terms of prediction accuracy.
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Although initially defined for chemical compounds, the concept of the Hosoya index has been studied in
a wide variety of graphs [1, 2, 15, 21]. One of the families of graphs in which the Hosoya index has been
known is the cycle graphs, which have Lucas numbers as their Hosoya indices. Lucas numbers, Ln has
value 2 for n = 1, value 1 for n = 2,and recursively defined as Ln= Ln−1+ Ln−2 for n > 2 [6, 26].

However, the Hosoya index still has not been found for some families of graphs related to cycles. The aim
of this paper is to propose an idea for implementing the Hosoya index in both the amalgamation of cycles
and the edge amalgamation of cycles. The amalgamation of cycles is formed when one identifies a fixed
vertex from a finite collection of cycles, and the edge amalgamation of cycles is formed when one identifies
a fixed edge from a finite collection of cycles.

2. Hosoya index of amalgamation of cycles

We start this chapter with the definition of amalgamation of graphs, which is taken from [17].

Definition 2.1. Let {Gi} be a finite collection of graphs and each Gi has a fixed vertex vi called an axis.
The amalgamation Amal{Gi, v0i} is formed by taking all Gi’s and identifying their axis.

For the case when all Gi are cycles, then the choice of the vertex is irrelevant.

Definition 2.2. [13] Let {Cni} be a finite collection of cycles and each Cni has a fixed vertex viwi called
a terminal. The amalgamation of these cycles is formed by taking all Cni ’s and identifying their terminal.
We denote this amalgamation by (Cni)t, where t denotes the number of cycles.

Some properties of the amalgamation of cycles have been studied, such as its resolving graph [13] and
its magic and antimagic decomposition [25].

In this part, we discuss how to find the Hosoya index amalgamation of cycles. The definition of the
Hosoya index is taken from [7].

Definition 2.3. Given a graph G, denote m(G, k) as the number of ways k mutually independent edges
can be selected in G, that is, the number of k-matching in G. m(G, 0) is defined as 0, and m(G, 1) is clearly
1. The Hosoya index of G is the summation of all m(G, k), Σk≥1m(G, k), denoted by Z(G).

Our result regarding the Hosoya index of amalgamation of cycles Cn is based on the following theorem
about the Hosoya index of cycles, which is the Corollary 11.6.2 in [14].

Theorem 2.4 (Hosoya index of cycle). [14]

The Hosoya index of amalgamation of cycles Cn is the Lucas number which is denoted by Ln.

Ln=


2 n = 1

1 n = 2

Ln−1 + Ln−2 n > 2.

We also utilize the result concerning the Hosoya number of paths, specifically Corollary 11.6.1 in [14]
and supported by [8].

Theorem 2.5 (Hosoya of path). [14]

For Pn, the Hosoya index is the Fibonacci number
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To find the Hosoya index of amalgamation of cycles, we apply the following recursion relations.
([14, Theorem 11.6(a)]).

Theorem 2.6. [14]

1. If e is any edge of a graph G connecting the vertices u and v, then

Z(G) = Z(G− e) + Z(G− u− v).

2. If v is a vertex in G and its neighbours are the vertices v1, v2, . . . , vk, then

Z(G) = Z(G− v) +
k∑

i=1

Z(G− v − vi).

3. If the graph G has components G1, G2, . . . , Gk, then

Z(G) = Z(G1).Z(G2) . . . Z(Gk).

With these recursion relations, we can determine the Hosoya index of a graph by calculating the Hosoya
indices of its subgraphs. Another concept of recursion can be found in [9]. Now we are ready to discuss the
Hosoya index of the amalgamation of cycles.

Theorem 2.7 (The Hosoya index of the amalgamation of cycles).

The Hosoya index of amalgamation of Cn1 , Cn2 , . . . , Cnk
is

k∏
i=1

Fni−2 + 2
k∑

i=1

Fni−3

k∏
j=1,j ̸=i

Fnj−2.

Proof. Let v be the terminal and G be the graph. We use Lemma 2.6(ii). The deletion of the terminal
induced a graph with Pn1−2, Pn2−2, . . . , Pnk−2 as its components. By Lemma 2.6(iii), the Hosoya index for

this graph is
∏k

i=1 Fni−2.
The deletion of the terminal and one of its neighbours in Cni induced a graph with k components, one is

Pni−3 and the others are in the form Pnj−2 for j ̸= i. The Hosoya index of this graph is Fni−3
∏k

j=1,j ̸=i Fnj−2.
Let N(v) denote the set of all neighbours of the terminal. Since there are two neighbours of v in each Cni ,

then σu∈N(v)Z(G− v − u) = 2σk
i=1Fni−3

∏k
j=1,j ̸=i Fnj−2. Therefore, the Hosoya index of the amalgamation

of the cycles Cn1 , Cn2 , . . . , Cnk
is
∏k

i=1 Fni−2 + 2σk
i=1Fni−3

∏k
j=1,j ̸=i Fnj−2.

3. Hosoya index of edge amalgamation of cycles

Similar to the previous chapter, we begin this chapter with the definition of edge amalgamation of graphs,
which is taken from[23, 4, 3].

Definition 3.1. Let {Cni} be a finite collection of graphs and each Cni has a fixed vertex viwi called a
terminal. The amalgamation of these cycles is formed by taking all Cni ’s and identifying their axis. We
denote this amalgamation by EdgeAmal(Cni)t, where t denotes the number of cycles.

For the case when all Gi are cycles, then the choice of the terminal is irrelevant.

Definition 3.2. Let {Cni} be a finite collection of cycles and each Cni has a fixed vertex viwi called a
terminal. The amalgamation of these cycles is formed by taking all Cni ’s and identifying their axis. We
denote this amalgamation by (Cn)t, where t represents the number of cycles.
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Figure 1: The deletion of vertices for the recurrence relation of Hosoya index of the amalgamation of cycles.

Figure 2: Edge amalgamation of cycles

Similar to the previous chapter, we find the Hosoya index of the edge amalgamation of cycles by repeatedly
using Lemma 2.6 to the edge amalgamation of cycles. In the process, some classes of graphs arise. We first
find the Hosoya indices of these classes before finding the Hosoya index of edge amalgamation of cycles.

First, we find the Hosoya index of amalgamation of paths where the terminal is formed by identifying
an endpoint of paths (Figure 3). We denote this graph by Amal{Pi, vi}.

Lemma 3.3. Let Amal{Pi, vi} be the graph formed when an endpoint of the paths Pn1 , Pn2 , . . . , Pnk
are

identified. Then,

Z(Amal{Pi, vi}) =
k∏

i=1

Fni−1 +

k∑
i=1

Fni−2

k∏
j=1,j ̸=i

Fnj−1.

Proof. We again use Lemma 2.6(ii). The deletion of the terminal induced a graph with Pn1−1, Pn2−1, . . . , Pnk−1

as its components. The Hosoya index for this graph is
∏k

i=1 Fni−1.
The deletion of the terminal and its neighbours in Pni induced a graph with k components, one is Pni−2

and the others are in the form Pnj−1 for j ̸= i. The Hosoya index of this graph is Fni−2
∏k

j=1,j ̸=i Fnj−1.
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Thus, the Hosoya index of the graph Amal{Pi, vi} is

k∏
i=1

Fni−1 +

k∑
i=1

Fni−2

k∏
j=1,j ̸=i

Fnj−1

.

Figure 3: Amalgamation of paths with an endpoint as the terminal

Next, we need to find the Hosoya index of the amalgamation of the graphs formed by identifying the
endpoints of several paths. We denote this kind of amalgamation by Amal{Pi, viwi}

Lemma 3.4. Hosoya index of amalgamation of paths Let Pn1 , Pn2 , . . . , Pnk
be paths with length n1, n2, . . . , nk

respectively, all ni’s greater than 1. Let Amal {Pi, viwi} be the graph formed when both endpoints of the
paths are identified. Then,

Z(Amal{Pi, viwi}) =
k∏

i=1

Fni−2 +
k∑

i=1

Fni−3

k∏
j=1,j ̸=i

Fnj−2

+

k∑
i=1

((Fni−3)

k∏
j=1
j ̸=i

Fnj−2 +

k∑
i

((Fn∗
i−4)

k∏
j=1
j ̸=i

Fnj−2 + (Fn∗i−4)(Fn∗
m−3)

k∏
j=1
j ̸=i
j ̸=m

Fnj−2)

where n∗
i − 4 = max{ni − 4, 0} and n∗

m − 3 = max{nm − 3, 0}.

Proof. We also use Lemma 2.6(ii) for this proof. Let v and w be the identified endpoints of Pn1 , . . . , Pnk
. The

deletion of v induces an endpoint amalgamation of paths, Amal{Pi, vi}, the graph class in the Lemma 3.3,
where the paths are Pn1−1, . . . , Pnk−1. The Hosoya index of this graph is

∏k
i=1 Fni−2+

∑k
i=1 Fni−3

∏k
j=1,j ̸=i Fnj−2.

Suppose the paths are Pn1−1, . . . , Pni−1−1, Pni−2, Pni+1−1, . . . , Pnk−1, the deletion of v and its neighbour
in Cni induces Amal{Pi, vi}. In this graph, the deletion of v induced graph with k components, one is
Pni−3 and all the others are in the form Pnj−2, j ̸= i. Thus, the Hosoya index is (Fni−3)

∏k
j=1
j ̸=i

Fnj−2.

Meanwhile, for the deletion of v and one of its neighbours, we shall consider two cases. If we delete v
and its neighbour in Pni−2, then the Hosoya index is Fn∗i

∏k
j=1
j ̸=i

Fnj−2, where n∗i = max{ni − 4, 0}. If we

delete v and its neighbour in one of the paths other than Pni−2, says in Pnm−1, then the Hosoya index is
(Fn∗

i−4)Fn∗
m−3

∏k
j=1
j ̸=i
j ̸=m

Fnj−2, where n∗
i − 4 = max{ni − 4, 0} and n∗

m − 3 = max{nm − 3, 0}.

Thus, the Hosoya index from the graph that formed after the deletion of v and its neighbour in Cni is
(Fni−3)

∏k
j=1
j ̸=i

Fnj−2+
∑k

i ((Fn∗
i−4)

∏k
j=1
j ̸=i

Fnj−2+(Fn∗i−4)(Fn∗
m−3)

∏k
j=1
j ̸=i
j ̸=m

Fnj−2, where n
∗
i −4 = max{ni−4, 0}

and n∗
m − 3 = max{nm − 3, 0}.
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Hence, the Hosoya index of Amal{Pi, viwi} satisfies

k∏
i=1

Fni−2 +

k∑
i=1

Fni−3

k∏
j=1,j ̸=i

Fnj−2 +

k∑
i=1

((Fni−3)

k∏
j=1
j ̸=i

Fnj−2 +

k∑
i

((Fn∗
i−4)

k∏
j=1
j ̸=i

Fnj−2 + (Fn∗i−4)(Fn∗
m−3)

k∏
j=1
j ̸=i
j ̸=m

Fnj−2)

, where n∗
i − 4 = max{ni − 4, 0} and n∗

m − 3 = max{nm − 3, 0}.

Now we are ready to discuss the Hosoya index of the edge amalgamation of cycles.

Theorem 3.5 (The Hosoya index of the edge amalgamation of cycles). The Hosoya index of edge amalga-
mation of the cycles Cn1 , Cn2 , . . . , Cnk

is
k∏

i=1

Fni−3 +
k∏

i=1

Fni−3 +
k∑

i=1

Fn∗
i−4

k∏
j=1,j ̸=i

Fnj−3 +
k∑

i=1

(Fn∗
i−4)

k∏
j=1
j ̸=i

Fnj−3 +
k∑

i=1

(Fn∗
i−5)

k∏
j=1
j ̸=i

Fnj−3 + (Fn∗
i−5)(Fn∗

m−4)
k∏

j=1
j ̸=i
j ̸=m

Fnj−3),

where n∗
α − c = max{ni − c, 0} for any positive integer c and α is any of the indexes i, j,m.

Proof. Let v and w be the endpoints of the axis of the edge amalgamation of cycles. We use Lemma 2.6(i)
for the proof. The deletion of v and w turns the graph into k numbers of paths Pn1−3, Pn2−3, . . . , Pnk−3.

The Hosoya index of this graph is
∏k

i=1 Fni .
The deletion of the axis turns the graphs into the graph Amal{Pi, viwi} discussed in Lemma 3.4 with

paths Pnk−1, . . . , Pnk−1. The Hosoya index of this graph is
∏k

i=1 Fni−3 +
∑k

i=1 Fn∗
i−4

∏k
j=1,j ̸=i Fnj−3 +∑k

i=1((Fn∗
i−4)

∏k
j=1
j ̸=i

Fnj−3 +
∑k

i ((Fn∗
i−5)

∏k
j=1
j ̸=i

Fnj−3 + (Fn∗i−5)(Fn∗
m−4)

∏k
j=1
j ̸=i
j ̸=m

Fnj−3), where n∗
α − c = max

{ni − c, 0} for any positive integer c and α is any of the indexes i, j,m.

Figure 4: Graph induced by deletion of axis and graph induced by deletion of axis and its endpoints on the
edge-amalgamation of cycles.



Herolistra Baskoroputro et al., Journal of Prime Research in Mathematics, 20(1) (2024), 15–22 21

G Order Size H(G,λ) W (G)

C1
1 3 3 3λ 3

C2
1 5 6 6λ+ 8λ2 22

C3
1 8 10 10λ+ 13λ2 + 5λ3 51

C4
1 12 15 15λ+ 25λ2 + 20λ3 + 6λ4 149

C5
1 17 21 21λ+ 40λ2 + 45λ3 + 25λ4 + 5λ5 361

C6
1 23 28 28λ+ 58λ2 + 77λ3 + 59λ4 + 25λ5 + 6λ6 772

C7
1 30 36

36λ+ 79λ2 + 116λ3 + 108λ4 + 66λ5 + 25λ6

+5λ7 1489

C8
1 38 45

45λ+ 103λ2 + 162λ3 + 168λ4 + 127λ5

+67λ6 + 25λ7 + 6λ8 2669

C9
1 47 55

55λ+ 130λ2 + 215λ3 + 239λ4 + 208λ5

+138λ6 + 66λ7 + 25λ8 + 5λ9 4491

C10
1 57 66

66λ+ 160λ2 + 275λ3 + 321λ4 + 304λ5

+234λ6 + 138λ7 + 67λ8 + 25λ9 + 6λ10 7260

Table 1: Hosoya polynomials of edge amalgamation of cycle graphs

4. Hosoya Polynomial and Wiener Index

The Hosoya polynomial and Wiener index have a powerful relationship, hence why it is also sometimes
called the Wiener-Hosoya polynomial. The relationship is that the first derivative of the Hosoya polynomial
at λ = 1 gives the Wiener index.

Definition 4.1. The Hosoya polynomial of a graph G was introduced by Hosoya in 1988 [11]. It was
previously known as the “Wiener polynomial”, but nowadays it is called the Hosoya polynomial. Hosoya
polynomial is a distance-based polynomial denoted by H(G; λ). It is defined as follows [18]:

H(G,λ) =
∑
k≥1

d(G, k)λk =
∑

1≤i<j≤n

λd(vi,vj |G)

Table 1 gives the calculation of Hosoya polynomials of edge amalgamation of several types of cycle
graphs.

5. Conclusion

In our study of Hosoya index, we obtain results for the amalgamation of cycles and the edge amalgamation
of cycles. In addition, we obtain the Hosoya index of amalgamation of paths where the identified vertex is
an endpoint.

Our results are primarily by counting the Hosoya index of the subgraphs that arise by the deletion of an
edge or some vertices. We only consider the cycles, in case of path graph Pn the Hosoya index is just the
Fibonacci number Fn this is because the deletion of edge or vertices in a cycle gives the path. We also worked
out Hosoya polynomial for some edge amalgamation of cycles given in Table 1. In our further work we would
like to work on Hosoya Index of some newly constructed graphs and we will get some computational result
for the Hosoya polynomial.
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